Electric Turbocharging for Energy Regeneration Increased Efficiency at Real Driving Conditions.
The demand for low fuel consumption and CO2 generation vehicles over the last few years has popularly increased the necessity of downsizing and increasing the overall thermal efficiency of Internal Combustion (IC) engines. Modern downsized internal combustion engines benefit from high-efficiency turbocharging systems for increasing their volumetric efficiency. However, despite the efficiency increase, turbochargers often lack fast transient response due to the nature of the energy exchange with the engine which deteriorates the vehicle’s drivability. An electrically-assisted turbocharger can be used for improving the transient response without any parasitic losses to the engine while providing energy recovery to increase overall system efficiency.
The present study provides a detailed numerical investigation on the potential of e-turbocharging to control load and if possible, replace wastegate valve. A parametric study of the optimum compressor/turbine sizing and wastegate area was performed for maximum torque, fast response time and energy regeneration across the real driving conditions speed/load area of the engine.
The results showed that the implementation of a motor-generator can contribute to reducing the response time of the engine by up to 90% while improving its thermal efficiency and generating up to 1kWh of energy. Suppressing the wastegate can only be achieved when a larger turbine is implemented which as a result deteriorates the engine’s response and leads to energy provision demands at low engine speeds.
Enhancing the performance of advanced battery technologies is pivotal in the development of high-functioning electric vehicles. In this case study, we explore how a collaboration between Rockfort Engineering, a UK based design consultancy specialising in EV powertrain integration and technologies, and IAAPS leveraged state-of-the-art testing facilities and expertise to push the boundaries of battery technology.
The primary goal is to develop a high-speed, electrically driven two-stage compressor that is both lighter and cheaper and more efficient than current air compressor systems available in the automotive sector
Our researchers analysed the commercial viability of solid-state batteries in automotive technology and whether elevated operational temperature is a barrier to mainstream adoption
Globally unique experimental and simulation techniques result in CO2 savings equivalent to removing 109, 000 cars from the road every year
Chassis dynamometers offer considerable potential for the analysis of real-world fuel economy and emissions performance
IAAPS is collaborating with McLaren on research into several technology areas for McLaren’s next generation engine and hybrid powertrain
Electric Turbocharging for Energy Regeneration Increased Efficiency at Real Driving Conditions
How we’ve helped Ford improve the way they measure carbon emissions and fuel consumption
In collaboration with the IAAPS team, HiETA Technologies designed, manufactured and physically tested a lightweight and internally cooled Radial turbine wheel
Our researchers have conducted experiments linking fuel use and the emotional response of drivers to acceleration performance
Alongside Ashwoods Automotive, our researchers have developed a mass-market-ready low-carbon diesel hybrid engine
A cost-effective solution to torque ripple in PM Synchronous Motors enabled our partner to expand its market into high-quality, light-weight electric vehicles
New Hybrid Thermal Propulsion Systems Prosperity Partnership aims to accelerate UK’s journey to zero emission mobility
Sign up to our newsletter
Never miss IAAPS news, insights, events and resources.