In collaboration with the IAAPS team, HiETA Technologies designed, manufactured and physically tested a lightweight and internally cooled Radial turbine wheel.
As specialists in world class thermal engineering technology, inspired and enabled by Additive Manufacturing, HiETA have collaborated with the University of Bath on the design, manufacture and physical test of a lightweight and internally cooled Radial turbine wheel, exploiting the design freedoms of Additive Manufacturing (AM). The objective of the project was to prove that operation in turbine inlet temperatures of 1200°C was possible by an AM internally cooled Radial turbine wheel. By increasing the turbine inlet temperatures to 1200°C the thermal efficiency of the turbine stage is drastically increased, and thus the overall efficiency of the engine system can be increased. Actively cooling the turbine wheel increases the component life and by light-weighting the wheel, inertia is reduced and so spool up times are quicker, as well as reducing wear on bearings.
The technology is applicable to Micro Gas Turbine systems where system efficiencies could be drastically increased by running the system hotter, as well as the automotive industry where lowering the inertia is advantageous. To achieve the objective, two approaches were combined. HiETA developed the capability to process a high-temperature resillient Nickel Super Alloy material CM247LC. Additionally, AM was exploited to create a novel design combining the required internal structure of the wheel with a targeted internal cooling method. Taking the standard oil cooled turbocharger as a baseline to reference against, the AM cooled wheel was tested back to back with the solid wheel, at the same design point using the same housings and bearings.
Topology optimisation was used to guide the required structural requirements, whilst a full conjugate heat transfer CFD model was created to model the effect of the cooling on the wheel. The CFD model was a full representation of the test set up, with compressor, bearings, turbine side all included. The output from this model was then validated via physical test. Due to limitations on the hot gas stand, it was not possible to test at 1200°C inlet temperatures, and so the wheels were coated with thermal history paint, which records the highest metal temperatures seen by the wheel.
Compared to the solid wheel baseline, the cooled wheel showed an LE temperature reduction of 60°C, a TE reduction of 100°C and mid-blade reduction of 90-100°C. The cooled wheel was 22% lighter than the solid baseline. The results from the test correlated closely to the CFD results, validating the accuracy of the model. CFD was then used to predict the temperature reduction at 1200°C turbine inlet temperature. At this condition, it is expected that temperature reductions of 200°C at LE, 250°C at TE and 180-200°C at the mid-blade would be presented.
Enhancing the performance of advanced battery technologies is pivotal in the development of high-functioning electric vehicles. In this case study, we explore how a collaboration between Rockfort Engineering, a UK based design consultancy specialising in EV powertrain integration and technologies, and IAAPS leveraged state-of-the-art testing facilities and expertise to push the boundaries of battery technology.
The primary goal is to develop a high-speed, electrically driven two-stage compressor that is both lighter and cheaper and more efficient than current air compressor systems available in the automotive sector
Our researchers analysed the commercial viability of solid-state batteries in automotive technology and whether elevated operational temperature is a barrier to mainstream adoption
Globally unique experimental and simulation techniques result in CO2 savings equivalent to removing 109, 000 cars from the road every year
Chassis dynamometers offer considerable potential for the analysis of real-world fuel economy and emissions performance
IAAPS is collaborating with McLaren on research into several technology areas for McLaren’s next generation engine and hybrid powertrain
Electric Turbocharging for Energy Regeneration Increased Efficiency at Real Driving Conditions
How we’ve helped Ford improve the way they measure carbon emissions and fuel consumption
In collaboration with the IAAPS team, HiETA Technologies designed, manufactured and physically tested a lightweight and internally cooled Radial turbine wheel
Our researchers have conducted experiments linking fuel use and the emotional response of drivers to acceleration performance
Alongside Ashwoods Automotive, our researchers have developed a mass-market-ready low-carbon diesel hybrid engine
A cost-effective solution to torque ripple in PM Synchronous Motors enabled our partner to expand its market into high-quality, light-weight electric vehicles
New Hybrid Thermal Propulsion Systems Prosperity Partnership aims to accelerate UK’s journey to zero emission mobility
Sign up to our newsletter
Never miss IAAPS news, insights, events and resources.